

Day 4 – Quantum Simulation

There are a few common things we can do with quantum simulation:

① calculate lowest energy state of a system (ground state)

② study the time dynamics of a quantum system

I will mainly focus on ② today.

As I mentioned before, the observables of a quantum system are always probabilistic, due to superposition. So we will generally not be able to say: "after a time t , this electron will be at location x or this qubit will be measured as 1."

But . . . the wave function describing a quantum system does evolve deterministically with time. Wave functions evolve according to Schrödinger's equation (SE). The time-dependent SE is:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H}(t) |\psi(t)\rangle$$

\uparrow
 Hamiltonian of the
 system
 (total energy operator)

This type of differential equation has a simple solution. If we strip away the "quantumness" here, we have something like:

$$\frac{\partial}{\partial t} x = cx$$

A solution to this is:

$$x(t) = x(0) e^{ct}$$

Similarly, the solution to the time-dep. SE is :

$$(*) |\psi(t)\rangle = e^{-i\hat{H}t/\hbar} |\psi(0)\rangle$$

 The above might not be true if \hat{H} depends on time

So if we know the wavefunction at $t=0$ and the Hamiltonian \hat{H} , we know the wave function at all later points in time!

We point out that $*$ is the same as evolving under a unitary operator

$$\hat{U}(t) = e^{-i\hat{H}t/\hbar}$$

$$\Rightarrow |\psi(t)\rangle = \hat{U}(t) |\psi(0)\rangle$$

In the case where $\hat{H} = \hat{H}(t)$, we can still find the wave function evolution, but the equations are more complicated.

What's the problem here?

What is the "size" of a wavefunction?

Consider 1 spin-1/2 particle: \emptyset
(two level)

Since it has 2 levels, we can describe the system by a wavefunction:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \quad (\text{2 coefficients})$$

Now consider 2 spin-1/2 particles:

This whole system is described by a wave function:

$$|\psi\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

Now we have 4 coefficients, arising from the fact that a system of n two-level particles encodes 2^n classical bits of information, due to superposition.

Suppose you want to simulate a system of 80 spin-1/2 particles. Then you need to store $2^{80} \approx 10^{24}$ wavefunction coefficients in classical memory...

If you use single precision storage, this would require 3.2×10^{25} bits ≈ 3 YB (yottabyte)

The total amount of data stored in the world (predicted by 2025) will be:

$$175 \text{ ZB} \sim 1.4 \times 10^{24} \text{ bits}$$

(zettabyte)

Clearly classical computing resources are not up to the challenge.

Why a quantum computer?

↳ a quantum computer inherently possesses the same exponential scaling as quantum systems

Two Main Types of Quantum Simulation:

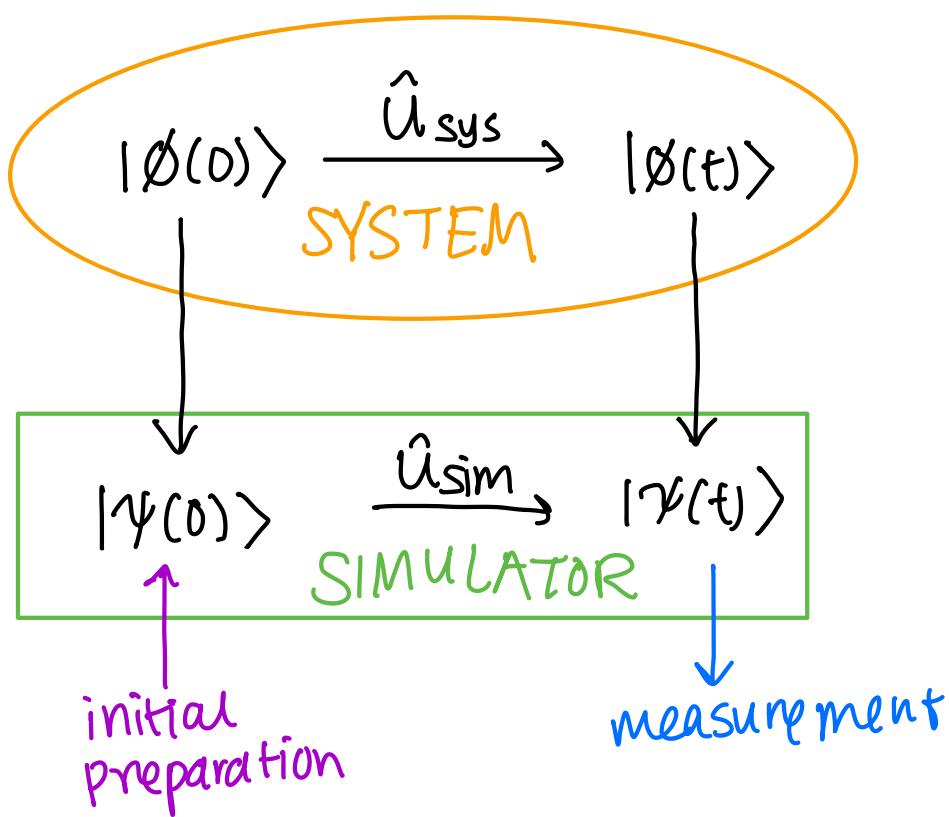
① Analog Quantum Simulation

↳ engineer the Hamiltonian of the simulator to emulate the desired Hamiltonian

↳ let the simulator evolve under the simulator Hamiltonian

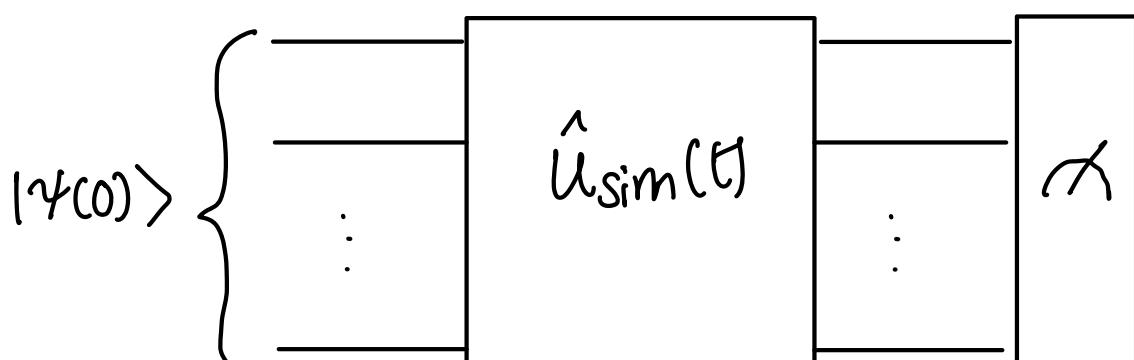
$$\hat{H}_{\text{sys}} \rightarrow \hat{H}_{\text{sim}}$$

$$\hat{U}_{\text{sys}}(t) \rightarrow \hat{U}_{\text{sim}}(t)$$



② Digital simulation

↳ use single and two-qubit gates to synthesize $\hat{U}_{\text{sim}}(t)$

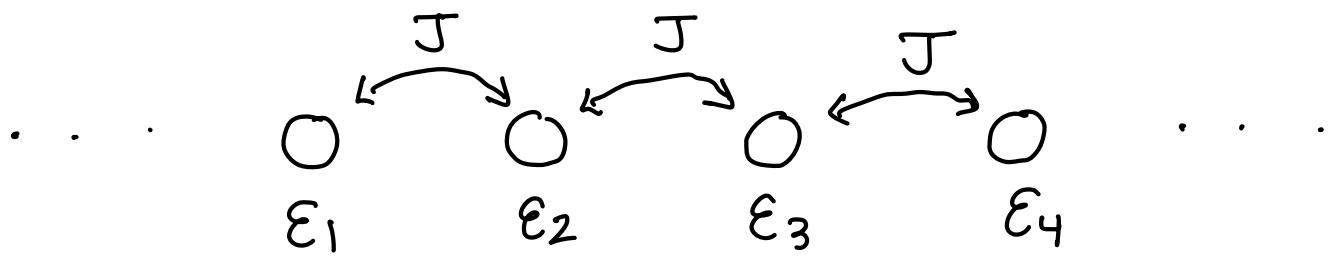


What is an example of an interesting Hamiltonian for analog simulation?

↳ Tight-binding Model: \hat{H}_{TB}

↳ describes electrons in solids

↳ explains some conductance properties of metals



Each site can be treated as a 2 level system:

$|0\rangle \rightarrow \text{no electron}$

$|1\rangle \rightarrow \text{electron}$

Energy of each site: $\hat{H}_{\text{site}} = -\frac{\epsilon}{2} \sigma_z$

$$\hat{H}_{\text{site}} |0\rangle = -\frac{\epsilon}{2} \hat{\sigma}_z = E_0$$

$$\hat{H}_{\text{site}} |1\rangle = \frac{\epsilon}{2} \hat{\sigma}_z = E_1$$

$$\Delta E = E_1 - E_0 = \epsilon$$

Exchange interaction between neighboring sites:

$$\hat{H}_{\text{int}} = -\frac{J}{2} (\sigma_x \sigma_x + \sigma_y \sigma_y)$$

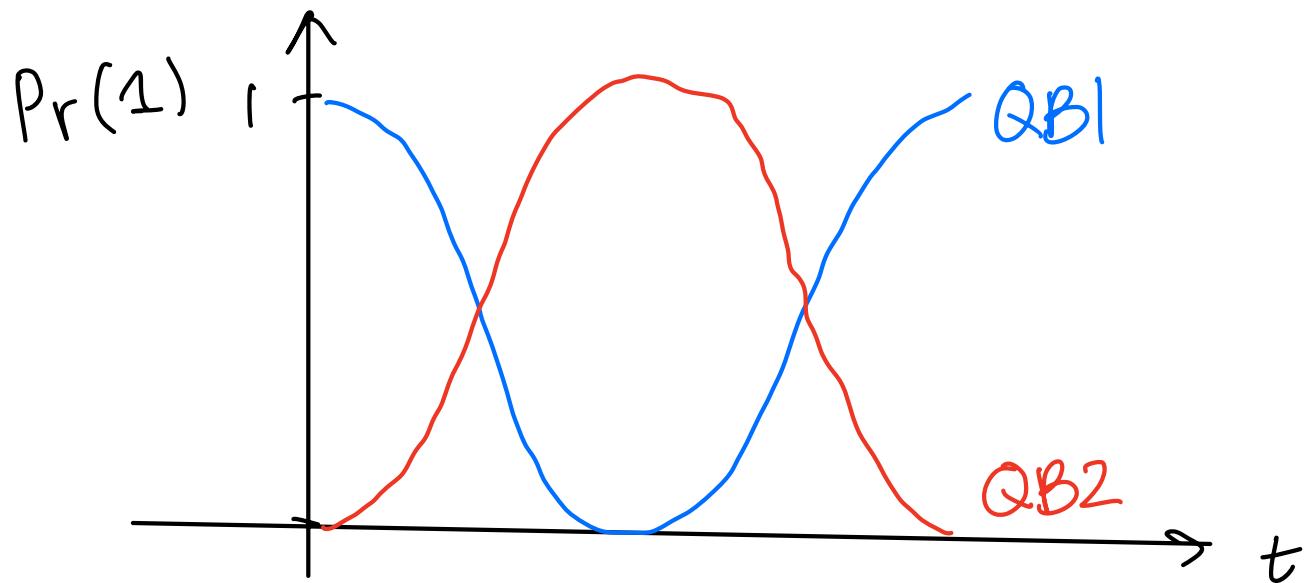
$$\begin{aligned}\hat{H}_{\text{int}} |01\rangle &= -\frac{J}{2} (\sigma_x \sigma_x |01\rangle + \sigma_y \sigma_y |01\rangle) \\ &= -\frac{J}{2} (|10\rangle + |10\rangle) \\ &= -J |10\rangle\end{aligned}$$

$$\begin{aligned}\hat{H}_{\text{int}} |10\rangle &= -\frac{J}{2} (\sigma_x \sigma_x |10\rangle + \sigma_y \sigma_y |10\rangle) \\ &= -\frac{J}{2} (|01\rangle + |01\rangle) \\ &= -J |01\rangle\end{aligned}$$

We also call this a "hopping" interaction, because the excitation hops back and forth between the 2 sites.

When we evolve under \hat{H}_{int} for

various times, we would see the excitation hopping back and forth:



So the total Hamiltonian generalized would be:

$$\hat{H}_{TB} = - \sum_{i=1}^N \frac{\epsilon_i}{2} \sigma_z^i - \frac{1}{2} \sum_{\langle i,j \rangle} J_{ij} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y)$$

Digital Quantum Simulation

Suppose we want to simulate:

$$\hat{H} = \sum_{\ell}^m \hat{H}_{\ell}$$

where \hat{H}_{ℓ} is a k -local Hamiltonian (only involves non-identity operations on k qubits)

Ex for 2-local: $\sigma_x^1 \otimes \sigma_z^2$

Ex for 3-local: $\sigma_x^1 \otimes \sigma_z^2 \otimes \sigma_y^3$

Most Hamiltonians of interest can be decomposed into such k -local Hamiltonians.

Our unitary that we want to synthesize is:

$$\begin{aligned}\hat{U}(t) &= e^{-i\hat{H}t/\hbar} \\ &= e^{-i\sum_{\ell}^m \hat{H}_{\ell} t/\hbar}\end{aligned}$$

If $[\hat{H}_i, \hat{H}_j] = 0$ for all $i, j \in \{1, 2, \dots, m\}$

then:

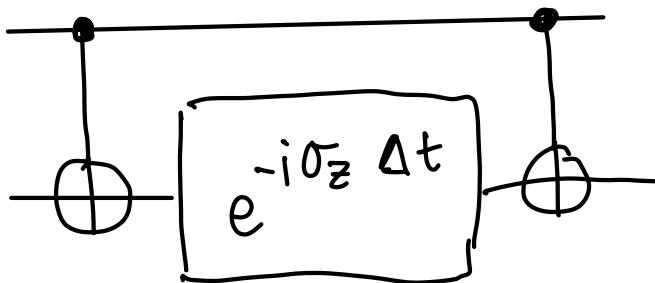
$$\hat{U}(t) = \prod_{l=1}^m e^{-iH_l t/\hbar}$$

we can construct
this with gates

Examples of gate constructions:

$$H_l = \sigma_z^1 \otimes \sigma_z^2$$

$$\Rightarrow \hat{U}(\Delta t) = e^{-i\sigma_z^1 \otimes \sigma_z^2 \Delta t}$$



I rotation around z for
time Δt

let's make sure we understand the idea behind this.

suppose we are doing a θ rotation:

$$R_z(\theta) = \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix}$$

OR $R_z(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$ up to a global phase

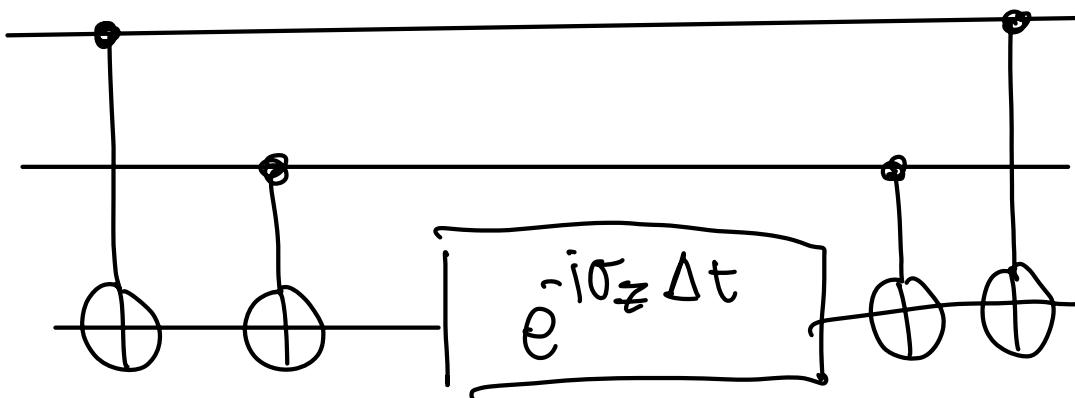
$$\text{So: } |00\rangle \rightarrow |00\rangle \quad \text{and } |11\rangle \rightarrow e^{i\theta} |11\rangle$$

Let's consider all four possible input basis states:

	after 1st CNOT	after $R_z(\theta)$	after 2nd CNOT
$ 00\rangle$	$ 00\rangle$	$ 0\rangle \otimes 0\rangle$	$ 00\rangle$
$ 10\rangle$	$ 01\rangle$	$ 0\rangle \otimes e^{i\theta} 1\rangle$	$e^{i\theta} 01\rangle$
$ 11\rangle$	$ 11\rangle$	$ 1\rangle \otimes e^{i\theta} 1\rangle$	$e^{i\theta} 10\rangle$
$ 11\rangle$	$ 10\rangle$	$ 1\rangle \otimes 0\rangle$	$ 11\rangle$

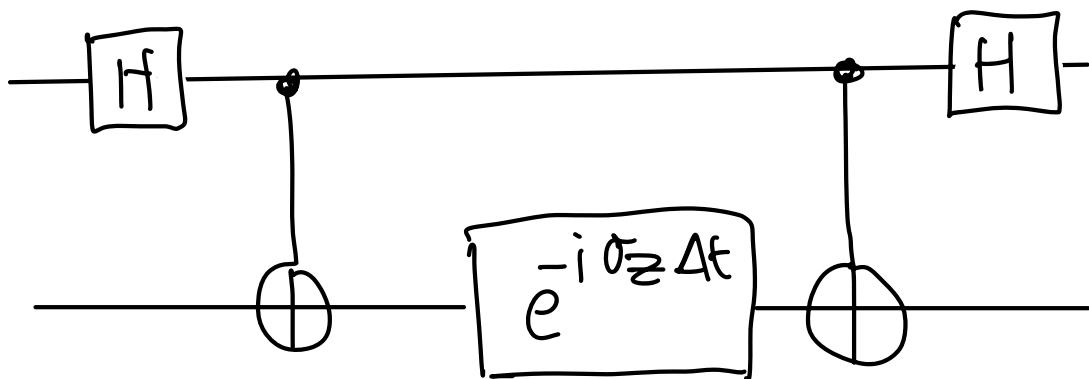
We wanted to apply $\sigma_z^1 \otimes \sigma_z^2$ which corresponds to a phase flip for $|01\rangle$ and $|10\rangle$ only, which we have.

The same works for $H_d = \sigma_z^1 \otimes \sigma_z^2 \otimes \sigma_z^3$



We can also generalize to other Paulis. Ex. $HZH = X$

So if $H_L = \sigma_x^1 \otimes \sigma_z^2$:



What if $[H_i, H_j] \neq 0$ for some of $i, j \in \{1, 2, \dots, m\}$?

$$\hookrightarrow e^{\hat{A} + \hat{B}} \neq e^{\hat{A}} e^{\hat{B}}$$

We have to use the Trotter-Suzuki formula:

$$\begin{aligned} \hat{U}(T) &= e^{-i \sum_m \hat{H}_m T} \\ &= \left(\prod_m e^{-i \hat{H}_m T / n} \right)^n + O\left(\frac{m^2 T^2}{n}\right) \end{aligned}$$

This is called Trotterization.

The simulation becomes more accurate as we increase n .

Summary:

- ↳ Analog:
 - ↳ pros: does not require Trotter steps (i.e. potentially more accurate)
 - ↳ cons: limited by the possible \hat{H} of your processor
- Digital:
 - ↳ pros: flexibility in terms of \hat{H}_{sim}
 - ↳ cons: requires Trotterization (which induces errors)