


 

CASHgame

Clauser Horne Shimony Holt
A bit on the history ofthe foundations of QM

Encearadox Einstein Podolsky Rosen
If we prepare an EPR pair

14Epr 1007 1117

Then measuring qubit 1allows us to
predict with certainty the valueofqubit 2 in
some fixed basis This is possible even

though no actual information was

transferred between the two particles

FPR argued that this must imply that
there is some type of local hidden
variable that deterministically leads
to the value of the measurement

outcomes and so the correlation
in outcomes is the result ofpurely
classical correlations

Then Bell and CHS H actuallydemonstrated
the opposite such a local hidden variable theory
cannot exist



CHSH gamesetup separatedby alargedistance so cannotcommunicate

Alice Bob
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Jeff
classical

game
1 Verifier chooses bits x y uniformly
at random and sends to Alice
and y to Bob

2 Alice responds with rat 0 1 and
Bob responds with rise 0,13

3 Jeff checks whether
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Question what is the strategy for
Alice Bob such that they
win the game w highprob

Let's say that A B have apurely
classical strategy What is their
maximal winning probability

Classical strategy assign a response

conditioned on the

input
Possible winning conditions

0 1 0 ra are
1 0 0 TA I TBO
I I 1 TA I TB 1

To find a winning strategy that works w 100

probability would need to find
rA o i TB o TA I VB



such that all ofthe above

equations are satisfied

BUT the LHS 000 0001 1

RHS ra 0 TB

A 0 TB 1

ra Vp 0

ra 4,1
XOXO F RA TO CHOY

associatitiveandcommutativeandself inverse
0

so not all equations can besatisfied
At most 3 of them can and therefore the
best classical strategy is w 75 probability

What about a
quantum strategy

Idea Alice and Bob share an EPR pair

HEPRY 10A B 111 1137

In this case choosing a strategy involves
choosing a mapping between input bit from



Jeff and a measurementbasic

Howdo we find the optimalstrategy

CHSH inequality metrin of correlation
strength for classical
systems This equals 2

To find optimal strategy want to

find measurements that
maximize the CASH inequality

E a b E a b E a b E al b 2

CHSH inequality a a b b are detector
settingsand EC is the
correlation

Turns out the optimalstrategy is between
measurement

Alice measures outcomes

If 0 Z basis

If 1 basis

Bob measures

If 0 XII basis

18 1 If basis



winning probability is cos I Tirelsonbrand

85
intuition there are unique correlations that

existdueto entanglement which can

increase thewinningprobability

PRL oforiginal
CASH paper 10.1103



1 Grover’s Algorithm

Following Shor’s algorithm, in 1995, Lov Grover proposed the quantum search algorithm now
known as Grover’s algorithm. Although Grover’s algorithm did not provide as spectacular
of a speedup (exponential) as Shor’s algorithm, the widespread applicability of search-based
methodologies created considerable interest in it.

As we will see, classical linear search requires O(N) operations, while quantum search
requires O(

√
N) operations. Note that while faster classical search algorithms exist (i.e.

binary search is O(log(n)) < O(
√
N)), but these algorithms require a sorted list of input. If

the sorting time is considered, the classical search is overall less efficient.

1.1 Problem Statement

Grover’s algorithm aims to solve the following problem:

Given a search space of size N, and no prior knowledge about the structure of informa-
tion in it (i.e. unstructured), find an element of that search space satisfying a known property.

Given: a list of N items

NN-11 2 w… …

Goal: identify the winner state (w)

1.2 Mapping to the Quantum Domain

Q: How will the list be defined in our quantum computer?
A: With an oracle.

In this case, the oracle is a “black-box" function which returns 0 for unmarked input
and 1 for the winner input

f(x) =

1, if x = w

0, if x ̸= w
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In the quantum computer the oracle will be encoded as a unitary matrix and the list of
items will be provided as a superposition of states. In order to represent the list items with
qubits, we must choose a binary encoding x,w ∈ 0, 1n such that N = 2n (where n is the
number of list items).

Example: Suppose we have a list of length N = 8, we need 3-bit binary encodings (8=23).
|000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩

Important Note: You may be wondering what the point of the oracle is at this point...It
seems as though the oracle already knows the answer to the search problem?! However, a
distinction should be made. You can recognize the solution to a search problem without
actually knowing the solution. The power of the quantum computer lies in out ability to
apply this recognition function to all N items at once (with superposition), rather than
testing each item individually, as is done classically.

We define the Grover oracle as unitary matrix Uf , which acts on any of the standard
basis states |x⟩ by,

Uf |x⟩ = (−1)f(x)|x⟩.

If x is unmarked, the oracle does nothing to the state. If x is a winner state, then
Uf |x⟩ = Uf |w⟩ = −|w⟩.

Now, all that is left is to define the input state to our system. Before looking at our
list of items, we have no idea where the winner state is. Any guess of its location is as good
as any other, meaning our input should be a uniform superposition state,

|s⟩ = 1√
N

N−1∑
x=0

|x⟩.

If we were to stop here and measure our state, the superposition would collapse to any one
of the basis states with the same probability, 1

N = 1
2n .

1.3 Geometric Picture

Grover’s algorithm uses a procedure called amplitude amplification to significantly enhance
the probability of measuring the winner state. Geometrically, we can picture the 2 special
states (winner |w⟩ and |s⟩) as 2 vectors spanning CN .
However, since |s⟩, is a superposition over all possible states (including |w⟩), it is not
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| ⟩𝑠

perpendicular to |s⟩. Thus, we introduce orthogonal state |s′⟩. |s′⟩ is obtained from |s⟩ by
removing |w⟩ and rescaling (as in the Gram-Schmidt process).

1.4 Amplitude Amplification Procedure

We now have everything we need to describe the procedure of Grover’s algorithm!

Step 0: Initialization
Initialize to superposition state, at t = 0,

|Ψ0⟩ = |s⟩ = H⊗n|0⟩n
(

=
1√
N

N−1∑
x=0

|x⟩

)

The average amplitude of N states is 1√
N

.
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Step 1: Apply Oracle
Apply the oracle, Uf ,

|Ψt′⟩ = Uf |Ψ0⟩.

Geometrically, Uf corresponds to a reflection of state |Ψ0⟩ about |s′⟩. Thus, the amplitude
of the |w⟩ state becomes negative and the overall average amplitude is lowered

(
< 1√

N

)
.
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1
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𝑈3

Step 2: Amplitude Amplification
Apply Us = 2|s⟩⟨s| − I,

|Ψt⟩ = Us|Ψt′⟩ = UsUf |Ψ0⟩.

Geometrically, Us corresponds to a reflection of state |Ψt′⟩ about |s⟩. From the perspective
our measurement amplitudes, this corresponds to a reflection about the average amplitude.
We can verify this mathematically by applying the operation (2|s⟩⟨s| − I), with |s⟩ =
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| ⟩𝑤
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1√
N

∑N−1
x=0 |x⟩, to a general state,

∑N−1
k=0 αk|k⟩, with average ⟨α⟩ =

∑
k αk|⟨s|k⟩|2,

(2|s⟩⟨s| − I)
∑

k αk|k⟩ =
∑

k 2αk|s⟩⟨s|k⟩ − αk|k⟩

=
∑

k 2αk|s⟩
(

1√
N

∑
x⟨x|k⟩

)
− αk|k⟩

=
∑

k 2αk|s⟩
(

1√
N

∑
x δxk

)
− αk|k⟩

=
∑

k
2αk√
N
|s⟩ − αk|k⟩

=
∑

k
2αk√
N

(
1√
N

∑
x |x⟩

)
− αk|k⟩

= 2
∑

k

∑
x

αk
N |x⟩ −

∑
k αk|k⟩

= 2
∑

x

(∑
k αk|⟨s|k⟩|2

)
|x⟩ −

∑
k αk|k⟩

=
∑

x 2⟨α⟩|x⟩ −
∑

k αk|k⟩

=
∑

k

(
2⟨α⟩ − αk

)
|k⟩

Step 3: Repeat
Repeat Steps 1 and 2 several times in order to rotate |s⟩ closer to |w⟩ and away from |s′⟩.
After t rotations, the state becomes,

|Ψt⟩ = (UsUf )
t|Ψ0⟩

As it turns out,
√
N rotations are necessary, since the amplitude of |w⟩ grows linearly with

the number of applications (grows as ∼ t
√
N , where t =

√
N such that ⟨w|s⟩ ≈ 1).
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1.5 Pseudocode

1) create superposition of n qubits

2) apply oracle O

3) apply Hadamard transformation H⊗n

4) perform a conditional phase shift on the computer, with every

computational basis state except |0⟩ receiving a phase shift of -1

|x⟩ → −(−1)δx,0 |x⟩
can be done with operator 2|0⟩⟨0| − I

5) apply Hadamard transformation H⊗n


Grover Iteration

6) repeat steps 2-5 (Grover Iteration) O(
√
N) times

1.6 General Quantum Circuit

| ⟩0 𝐻⊗8

𝐺 𝐺 … 𝐺

𝑂( 𝑁)

oracle
workspace

n qubits

Grover search algorithm implementation, where each "G" gate corresponds to a single Grover iteration.

=𝐺
| ⟩𝑥 → (−1)3(?)| ⟩𝑥

Oracle 𝑈3 :
𝐻⊗8 𝐻⊗8

| ⟩0 → | ⟩0 , | ⟩𝑥 → −| ⟩𝑥

Phase Flip 𝑈5 :
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1.7 N = 4 (2-bit) Implementation Example

We now provide an example of the exact gates necessary to implement Grover’s algorithm
to search in a list of 4 items (|00⟩, |01⟩, |10⟩, |11⟩).

𝐻

𝐻

𝐻

(Oracle)

𝐻

𝐻

𝑋

𝑋 𝐻 𝐻

𝑋

𝑋

𝐻

𝐻

𝑈5

𝑈3

4 possible oracles:

As you can see, there are four different possible oracles, corresponding to the state we are
searching for. On your pset you will be tasked with verifying that each of these oracles
result in a different output states.

1.8 Further Reading

To see how the algorithm can be implemeted in a hybrid system (i.e. one with classical
memory) and how the algorithm acts when there are multiple winner states in the list of
items, read chapter 6 of Quantum Computation and Quantum Information, by Nielsen and
Chuang.
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