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a Hyperboloid (90 sites) b Mdbius strip (85 sites)

Quantum mechanics is about
understanding a world that Is
hard to see.

c Cg, fullerene-like (84 sites) d Cone (100 sites)

Quantum computing is about
harnessing that world for
computation.

e Torus (120 sites) f Eiffel tower (126 sites)

https://arxiv.org/
abs/1712.02727:
“Single atom
fluorescence in 3d
arrays. (a-f)
Maximum intensity
projection
reconstruction of
the average
fluorescence of
single atoms
stochastically

loaded into
exemplary arrays of
traps. The x,y,z scan
range of the
fluorescence is
Indicated and is the
same for all the 3d
reconstructions.”
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Om Joshi (he/him) Matthew Yeh (he/him) Agi Villanyi (they/them)
PhD student, MIT RLE PhD student, Harvard SEAS PhD student, MIT CSAIL
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PhD student, MIT Physics
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https://www.nuclear-power.com/nuclear-engineering/heat-transfer/radiation-heat-transfer/what-is-blackbody-definition-of-blackbody/
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https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Quantum_Mechanics/09._The_Hydrogen_Atom/Bohr's_Hydrogen_Atom
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Fig. 1. Walther Gerlach sent this postcard to Niels Bohr, which says in
German: “Attached is the experimental proof of spatial quantization
(silver without and with field). We congratulate you on the confirma-
tion of your theory.”.
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Why are we doing this?

Physics

-

* Quantum simulation: approximate

quantum dynamics on a
computational device.
* Quantum chemistry
* Engineering new materials
 Fundamental many body
physics discoveries

* Quantum sensing: using quantum

bits (qubits) for precision
measurement.

> < Computer Science

/ Computability: The Extended- Churcm

Turing Thesis claims that every
reasonable computer that can be built
physically can be simulated by a Turing
machine. Is this true? Cryptography:
more secure communication protocols
(quantum cryptography), new
challenges of developing quantum-safe
protocols (post-quantum
cryptography).

e Algorithms: new models of

J

computation and new tools for both

\quantum and classical algorithms. J
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DiVincenzo’s Criteria

. The ability to construct a qubit, physicall

Y.

2. The ability to initialize a quantum state.

3. Long coherence times.

4. A universal set of quantum gates.

5. The ability to make measurements.

CNC N N2

IR AN AN AN

~

\_

At any given point in time, a classical

with 7 bits of data, while a quantum

with 2" bits of data.

~

computation with an n-bit memory can work

computer with an n-qubit memory can work

j




The Qubit
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Superposition

Thursday, January 9, 2025 12:17 AM

e A brief history of quantum mechanics
¢ Why develop quantum information science?
¢ Introducing: the qubit

o Mathematical formalism
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Physical implementations of

qubits

Matthew Yeh
Adapted from slides given by

Ben Pingault, ANL

2025, MIT Quantum Winter School



Quantum computation: the quantum bit -

* Two-state quantum system: possible superposition of 0 and 1
[¥) = c110) + ¢1]1),  co,c1 EC (0]1) =0

* Information stored in ¢y and c;: W) = lcol® + ler]? =1
_ (€0
W)= ()
* Representation as a Bloch vector: |Y) = cos(6/2) |0) + e sin(6/2) |1)
|0)
z

1
vz

2
y V2

(10) = il1) (10} + 1)

1)




DiVincenzo criteria o

Set of 5 requirements for a physical system to be used as a suitable qubit:

— Scalability (well-characterised qubit)
— Simple initialization
— Coherence time much longer than gate operation time
— Single- and two-qubit gates
— Measurement of state of each qubit
* No current system fulfills all requirements

* Main issue: scalability
* Fidelity of operations (initialization, gates, measurement)
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Qubit:

dual-rail encoding
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Neutral atoms

Qubit:

— Hyperfine states of neutral atoms

° ’
[ ] [ [ [ ()
Rb, C S3.3 fEees et Ll
— e 90 °
» LS e %0c% “%e®? Seece o ®cces ©°
L]
Computing Inc.
F=
A “ 33
266.7 MHz | —
5%2P3) - 1|
A A A2 valence electrons
156.9 MHz 1
L & g I —
: A o
D> line i 72.2 MHz] - Q o
780.241nm oo oo lo 0 | L .. -
384.230 THz o e s 5 @ iy ground—state atom
1.589 049 eV = 5 S |o 3 Rydberg core 7
[/21m=6.067 MHz @ 5 |1 le 4
N 13
vy |l v | vy P=
28 \ 4 *
5 .
2 6835 MHz
Y Y Y4




Trapped ions

Qubit
— Hyperfine states of charged atoms
— 40Ca+' 171Yb+

Probability vs. Time

--- lgg>

..... |Eg-_-, or |ge>

— |ee>

i

L L

— n+l 1.0F =~
1) n
ol o8k
-
“__ﬁ_&__"_. \ 2+1 4'_5 0.6F
.
E 0.4r
[a
n+l L
|¢¢> § 0.2
_  n-1
0.0+ . :
0.0 0.5

10 15 20 25 30
Time [gate time]

3.5

4.0




Defects in solids

Qubit
— Magnetic sublevels of spin defect
— Diamond: NV, SiV, SnV, PbV...
— SiC: 'V, W

— Si: T center
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[34] Steger M, et al., Science 336, 1280 (2012)
[35] Abobeih M, et al., Nature Commun. 9, 2552 (2018)



Superconducting qubits

Qubit

— Phase qubit: ’phase particle’ energy levels
— Flux qubit: cw and ccw supercurrent
— Charge qubit: Cooper pair charge
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G Wendin, Rep. Prog. Phys.80 106001 (2017)
Houck et al, Quantum Information Processing 8, 105-115 (2009)
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